43 research outputs found

    Matrix metalloproteinases in liver injury, repair and fibrosis.

    Get PDF
    The liver is a large highly vascularized organ with a central function in metabolic homeostasis, detoxification, and immunity. Due to its roles, the liver is frequently exposed to various insults which can cause cell death and hepatic dysfunction. Alternatively, the liver has a remarkable ability to self-repair and regenerate after injury. Liver injury and regeneration have both been linked to complex extracellular matrix (ECM) related pathways. While normal degradation of ECM components is an important feature of tissue repair and remodeling, irregular ECM turnover contributes to a variety of liver diseases. Matrix metalloproteinases (MMPs) are the main enzymes implicated in ECM degradation. MMPs not only remodel the ECM, but also regulate immune responses. In this review, we highlight some of the MMP-attributed roles in acute and chronic liver injury and emphasize the need for further experimentation to better understand their functions during hepatic physiological conditions and disease progression

    Reference gene validation for quantitative RT-PCR during biotic and abiotic stresses in Vitis vinifera

    Get PDF
    Grapevine is one of the most cultivated fruit crop worldwide with Vitis vinifera being the species with the highest economical importance. Being highly susceptible to fungal pathogens and increasingly affected by environmental factors, it has become an important agricultural research area, where gene expression analysis plays a fundamental role. Quantitative reverse transcription polymerase chain reaction (qRT-PCR) is currently amongst the most powerful techniques to perform gene expression studies. Nevertheless, accurate gene expression quantification strongly relies on appropriate reference gene selection for sample normalization. Concerning V. vinifera, limited information still exists as for which genes are the most suitable to be used as reference under particular experimental conditions. In this work, seven candidate genes were investigated for their stability in grapevine samples referring to four distinct stresses (Erysiphe necator, wounding and UV-C irradiation in leaves and Phaeomoniella chlamydospora colonization in wood). The expression stability was evaluated using geNorm, NormFinder and BestKeeper. In all cases, full agreement was not observed for the three methods. To provide comprehensive rankings integrating the three different programs, for each treatment, a consensus ranking was created using a non-weighted unsupervised rank aggregation method. According to the last, the three most suitable reference genes to be used in grapevine leaves, regardless of the stress, are UBC, VAG and PEP. For the P. chlamydospora treatment, EF1, CYP and UBC were the best scoring genes. Acquaintance of the most suitable reference genes to be used in grapevine samples can contribute for accurate gene expression quantification in forthcoming studiesinfo:eu-repo/semantics/publishedVersio

    Fibronectin in Immune Responses in Organ Transplant Recipients

    No full text

    Matrix Metalloproteinase-2 (MMP-2) Gene Deletion Enhances MMP-9 Activity, Impairs PARP-1 Degradation, and Exacerbates Hepatic Ischemia and Reperfusion Injury in Mice.

    No full text
    Hepatic ischemia and reperfusion injury (IRI) is an inflammatory condition and a significant cause of morbidity and mortality after surgery. Matrix metalloproteinases (MMPs) have been widely implicated in the pathogenesis of inflammatory diseases. Among the different MMPs, gelatinases (MMP-2 and MMP-9) are within the most prominent MMPs detected during liver IRI. While the role of MMP-9 in liver damage has been fairly documented, direct evidence of the role for MMP-2 activity in hepatic IRI remains to be established. Due to the lack of suitable inhibitors to target individual MMPs in vivo, gene manipulation is as an essential tool to assess MMP direct contribution to liver injury. Hence, we used MMP-2-/- deficient mice and MMP-2+/+ wild-type littermates to examine the function of MMP-2 activity in hepatic IRI. MMP-2 expression was detected along the sinusoids of wild-type livers before and after surgery and in a small population of leukocytes post-IRI. Compared to MMP-2+/+ mice, MMP-2 null (MMP-2-/-) mice showed exacerbated liver damage at 6, 24, and 48 hours post-reperfusion, which was fatal in some cases. MMP-2 deficiency resulted in upregulation of MMP-9 activity, spontaneous leukocyte infiltration in naïve livers, and amplified MMP-9-dependent transmigration of leukocytes in vitro and after hepatic IRI. Moreover, complete loss of MMP-2 activity impaired the degradation of poly (ADP-ribose) polymerase (PARP-1) in extensively damaged livers post-reperfusion. However, the administration of a PARP-1 inhibitor to MMP-2 null mice restored liver preservation to almost comparable levels of MMP-2+/+ mice post-IRI. Deficient PARP-1 degradation in MMP-2-null sinusoidal endothelial cells correlated with their increased cytotoxicity, evaluated by the measurement of LDH efflux in the medium. In conclusion, our results show for the first time that MMP-2 gene deletion exacerbates liver IRI. Moreover, they offer new insights into the MMP-2 modulation of inflammatory responses, which could be relevant for the design of new pharmacological MMP-targeted agents to treat hepatic IRI

    Tissue Inhibitor of Metalloproteinase 3 Deficiency Disrupts the Hepatocyte E‐Cadherin/β‐Catenin Complex and Induces Cell Death in Liver Ischemia/Reperfusion Injury

    No full text
    Tissue inhibitor of metalloproteinase (TIMP) 3 is a naturally occurring inhibitor of a broad range of proteases, with key roles in extracellular matrix turnover and in the pathogenesis of various diseases. In this study, we investigated the response of mice lacking TIMP3 (TIMP3-/-) to hepatic ischemia/reperfusion injury (IRI). We report here that TIMP3-/- mice showed an enhanced inflammatory response, exacerbated organ damage, and further impaired liver function after IRI when compared with their wild-type littermates. Loss of TIMP3 led to the cleavage and shedding of E-cadherin during hepatic IRI; the full-length 120-kDa E-cadherin and the ratio of 38-kDa C-terminal fragment/120-kDa E-cadherin were decreased and increased, respectively, in TIMP3-/- livers after IRI. Moreover, GI254023X, a potent inhibitor of a disintegrin and metalloprotease (ADAM) 10, was capable of partially rescuing the expression of E-cadherin in the TIMP3-null hepatocytes. The proteolysis of E-cadherin in the TIMP3-/- livers was also linked to the loss of β-catenin from the hepatocyte membranes and to an increased susceptibility to apoptosis after liver IRI. In a similar fashion, depression of the E-cadherin/β-catenin complex mediated by TIMP3 deletion and knockdown of β-catenin by small interfering RNA were both capable of inducing caspase activation in isolated hepatocytes subjected to H2 O2 oxidative stress. Hence, these results support a protective role for TIMP3 expression in sheltering the hepatocyte E-cadherin/β-catenin complex from proteolytic processing and inhibiting apoptosis after hepatic IRI

    MMP-9 deficiency shelters endothelial PECAM-1 expression and enhances regeneration of steatotic livers after ischemia and reperfusion injury

    Full text link
    BACKGROUND & AIMS Organ shortage has led to the use of steatotic livers in transplantation, despite their elevated susceptibility to ischemia/reperfusion injury (IRI). Matrix metalloproteinase-9 (MMP-9), an inducible gelatinase, is emerging as a central mediator of leukocyte traffic into inflamed tissues. However, its role in steatotic hepatic IRI has yet to be demonstrated. METHODS We examined the function of MMP-9 in mice fed with a high-fat diet (HFD), which developed approximately 50% hepatic steatosis, predominantly macrovesicular, prior to partial hepatic IRI. RESULTS The inability of MMP-9(-/-) deficient steatotic mice to express MMP-9 significantly protected these mice from liver IRI. Compared to fatty controls, MMP-9(-/-) steatotic livers showed significantly reduced leukocyte infiltration, proinflammatory cytokine expression, and liver necrosis. Loss of MMP-9 activity preserved platelet endothelial cell adhesion molecule-1 (PECAM-1) expression, a modulator of vascular integrity at the endothelial cell-cell junctions in steatotic livers after IRI. Using in vitro approaches, we show that targeted inhibition of MMP-9 sheltered the extracellular portion of PECAM-1 from proteolytic processing, and disrupted leukocyte migration across this junctional molecule. Moreover, the evaluation of distinct parameters of regeneration, proliferating cell nuclear antigen (PCNA) and histone H3 phosphorylation (pH3), provided evidence that hepatocyte progression into S phase and mitosis was notably enhanced in MMP-9(-/-) steatotic livers after IRI. CONCLUSIONS MMP-9 activity disrupts vascular integrity at least partially through a PECAM-1 dependent mechanism and interferes with regeneration of steatotic livers after IRI. Our novel findings establish MMP-9 as an important mediator of steatotic liver IRI
    corecore